skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Arad, Danielle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Adenosine-to-inosine (A-to-I) messenger RNA (mRNA) editing can affect the sequence and function of translated proteins and has been extensively investigated in eukaryotes. However, the prevalence of A-to-I mRNA editing in bacteria, its governing regulatory principles, and its biological significance are poorly understood. Here, we show that A-to-I mRNA editing occurs in hundreds of transcripts across dozens of gammaproteobacterial species, with most edits predicted to recode protein sequences. Furthermore, we reveal conserved regulatory determinants controlling editing across gammaproteobacterial species. Using Acinetobacter baylyi as a model, we show that mutating TadA, the mediating enzyme, reduces editing across all sites. Conversely, overexpressing TadA resulted in the editing of >300 transcripts, attesting to the editing potential of TadA. Notably, we show for the first time, at the protein level, that normal levels of A-to-I mRNA editing lead to wild-type bacteria expressing two protein isoforms from a single gene. Finally, we show that a TadA mutant with deficient editing activity does not grow at high temperatures, suggesting that RNA editing has a functional role in bacteria. Our work reveals that A-to-I mRNA editing in bacteria is widespread and has the potential to reshape the bacterial transcriptome and proteome. 
    more » « less